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ABSTRACT 
 
Applicability of the first-order perturbation (FOP) theory method to reactivity estimation for source-
driven systems is examined in this paper. First, the formally exact point kinetics equations have been 
derived from the space-dependent kinetics equations and the kinetics parameters including the 
dynamic reactivity have been defined. For the dynamic reactivity, exact and first-order perturbation 
theory expressions for the reactivity change have been formulated for source-driven systems. It has 
been also shown that the external source perturbation itself does not change the reactivity if the initial 
λ -mode adjoint flux is used as the weight function. Using two source-driven benchmark problems, 
the reactivity change has been estimated with the FOP theory method for various perturbations. By 
comparing the resulting reactivity changes with the exact dynamic reactivity changes determined from 
the space-dependent kinetics solutions, it has been shown that the accuracy of the FOP theory method 
for the accelerator-driven system (ADS) is reasonably good and comparable to that for the critical 
reactors. The adiabatic assumption has also been shown to be a good approximation for the ADS 
kinetics analyses. 
 
 

I. INTRODUCTION 
 
Accelerator-driven systems are currently being proposed for the transmutation of nuclear wastes.[1] 
The determination of the safety characteristics of ADSs would require the application of system 
analysis codes such as SAS4A/SASSYS[2]. These codes typically use the point kinetics 
approximation for solving the neutron kinetics equations. In addition, the point kinetics analyses are 
often utilized for the scoping evaluation of the source-driven systems. An issue that arises in the point 
kinetics approach is the need to provide appropriate reactivity coefficients that are typically derived 
from first-order perturbation (FOP) theory.  
 
In the conventional source-free reactor systems, two concepts of reactivities are used. These are the 
static and dynamic reactivities. The static reactivity indicates the off-criticality of a physical state, i.e., 
a distance from the critical state. On the other hand, the dynamic reactivity is related to an actual 
transient, thus it is a time-dependent quantity. In a similar way, both static and dynamic reactivities 
could be consistently defined for the source-driven system, as discussed in Ref. 3. 
 
The concept of reactivity is required only in lumped parameter models such as the point kinetics 
equations. In a point kinetics model for a source-free system, the dynamic reactivity is the primary 
driving function that determines the system response during a transient. On the other hand, the 
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dynamic response of a source-driven system is governed by both the associated dynamic reactivity 
and the external source. The neutronic behavior of a subcritical core is usually rather sensitive to the 
source characteristics such as energy spectrum, spatial distribution, etc. Previously, concerning the 
reactivity of source-driven systems, Gandini[4] proposed a special concept of reactivity, the so-called 
generalized reactivity, which incorporates both the conventional dynamic reactivity and the external 
source. However, the suitability of a dynamic reactivity definition generally depends on its 
consistency.[3] Thus, the conventional definition of the dynamic reactivity is utilized in this paper. 
 
The objective of this paper is to address the validity of the FOP theory for predicting the change of the 
dynamic reactivity in the source-driven system. In Section II, a consistent reactivity expression is 
derived for the exact point kinetics equations and the perturbation theory expressions for the reactivity 
are presented in Section III. Section IV contains the numerical test results for benchmark problems. 
Lastly, conclusions and future works are provided in Section V. 
 
 

II. POINT KINETICS EQUATIONS FOR SOURCE-DRIVEN SYSTEMS 
 
For a source-driven system with an independent source S , the space-energy-dependent dynamics 
equations for the neutron flux Φ  and delayed neutron precursors C  can be written in an operator 
form [3] as 
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where  is the neutron velocity,  is the prompt fission source operator,  are the delayed fission 

source operators, 

v pF dkF
M  is the neutron migration and loss operator, kλ  is the decay constant for the k-th 

group delayed neutron precursors, and dkχ  is the emission spectrum of the k-th delayed neutron 
group. The flux can be factorized without any approximation into an amplitude function and a 
space-, energy-, and time-dependent shape function 
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                                                     0),,(),(1 KdVdEtErErw
v

=Ψ∫∫ ,                                              (3) 

where  is a weighting function and  is a constant. w 0K
 
The formally exact point kinetics equations can consistently be derived by inserting the flux 
factorization into Eq. (1) and integrating over space and energy with a weighting function. In this 
model, a dynamic reactivity is defined in terms of the weighting function and time-dependent shape 
function. The weighting function should be chosen such that the reactivity is insensitive to errors in 
the shape function.[3] For an initially critical reactor, the initial adjoint flux fulfils this requirement. 
However, for a subcritical reactor with an independent source, the adjoint function is not uniquely 
defined, and thus the reactivity can be defined in various ways, depending on the weighting function. 
Typically, the λ–mode adjoint function of the initial state has been used as the weighting function, 
since it leads to a formulation that eliminates the first-order flux errors. The λ–mode adjoint function 
of the initial state  can be obtained by solving the following adjoint equation *

0λ
Φ
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where  and *F *M  are the adjoint operators of F (= ∑+
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dkp FF ) and  M, respectively, and subscript 

0 means the initial state.  
 
Inserting the factorization in Eq. (2) into Eq. (1), integrating over space and energy with the weighting 
function , and dividing the resulting expression by *

0λ
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the point kinetics equations for an initially subcritical system can be obtained as: 
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and the other notations are standard.[3] In Eq. (6), the precursors and independent source are 
represented in the “reduced” form rather than in simple adjoint-weighted integrals employed in more 
conventional point kinetics equations. These reduced quantities represent the relative values of these 
integrals to the adjoint-weighted quasi-stationary fission source, and provide a simpler and more 
direct physical interpretation than the conventional ones. 
 
The reactivity defined in Eq. (6c) is called “dynamic reactivity,” and it is formed with the time-
dependent flux as it physically appears during a transient. It is noteworthy that the dynamic reactivity 
at  is numerically equal to the static reactivity of the initial stationary state: 0=t

                                                  .                                                       (7) 0
0

0 /111)0( ρλρ =−=−= effk

This is because the dynamic reactivity is defined in the same form as the static one and the initial 
source-free λ–mode adjoint function is used as the weighting function. 
 
 

III. PERTURBATION THEORY EXPRESSIONS OF REACTIVITY 
 
The parameters of the exact point kinetics equations can be determined only when the exact solution 
of the space-energy-dependent problem is known. Thus, some approximations need to be introduced 
to derive a practical point reactor model. For the practical estimation of reactivity changes, 
perturbation theory expressions are generally employed. In this section, the exact perturbation theory 
(EPT) expression is first derived from the dynamic reactivity defined in Eq. (6c). Then, the FOP 
reactivity expression is approximately obtained from the exact one. The EPT expression based on the 
adiabatic approximation is also derived for comparison purposes. 
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The formally exact perturbation formula for the difference between the dynamic reactivity ρ (t) and 
the initial static reactivity 0ρ  can be expressed by the differences of the operators in the following 
form:[3] 
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where  and ∆ . This is due to the property of the initial λ–mode adjoint 
function employed as weight function, and can be easily verified as: 
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The exact perturbation formula of Eq. (8) shows that the reactivity is changed only when the operators 
are perturbed. In other words, if the flux is perturbed by some means without changing the core 
properties, the reactivity is not changed by this flux perturbation. For example, the external source 
perturbation does not change the reactivity even though it results in a flux perturbation. As mentioned 
above, in the point kinetics equations derived using the initial λ–mode adjoint flux as the weighting 
function, the external source change is directly accounted for through the reduced source term. The 
space and energy dependent effects of the source perturbation are accounted for by the same adjoint 
weighting function. If a source change occurs in a low-importance phase space (in terms of space and 
energy), the resulting change of the reduced source would be small. On the other hand, any source 
change in a high-importance regime would incur significant change in the reduced source. 
 
Representing the time dependent flux in Eq. (8) as ∆Ψ+Ψ=Ψ 0 , where Ψ  is the initial flux 
satisfying the inhomogeneous equation 

0
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the exact perturbation expression of Eq. (8) can be reduced to 
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If we neglect the second and higher order terms, the FOP expression for the reactivity change is 
obtained in the form, 
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Note that Eq. (12) is very similar to the source-free FOP expression for the static reactivity change, 
except that , instead of , is used in the latter case.  0F F
 
Eqs. (8) and (12) clearly demonstrate the advantage of using the initial λ–mode adjoint function as a 
weighting function. If a different weighting function is used, the EPT formula cannot be represented 
by simple differences of the operators, and hence the simple second-order accurate FOP expression of 
Eq. (12) cannot be obtained. It is also important to note that if we represent the time dependent flux 
shape by a perturbation of initial λ–mode flux as: 

                                                               λλ ∆Ψ+Ψ=Ψ 0 ,                                                                (13) 
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then  of Eq. (11) becomes ( , and might not be 

second order any more. Since ∆Ψ  represents the deviation of the source-driven flux shape from the 
fundamental eigenmode, it is not zero at the initial state and might be comparable to either 
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the accuracy of the FOP expression. 
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The flux shape in a source-driven system is predominantly governed by the external source when the 
system is not close to being critical. Rydin and Woosley[5] have shown that when the ADS is 
sufficiently subcritical, the effects of delayed neutrons on the system dynamics are negligibly small. 
This suggests that the adiabatic assumption[3,6] could be a good approximation in a source-driven 
system. In the adiabatic approximation, the time-dependent flux shape can be determined by the 
stationary equation 

SMF −=− ϕ)( ,                                                                (14) 

Inserting this flux shape into Eqs. (6c) and (8), the adiabatic dynamic reactivity and the corresponding 
EPT expression for reactivity change are obtained as 
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IV. NUMERICAL TESTS AND DISCUSSION 
 
Applicability of the FOP expression for reactivity change was tested against two source-driven 
problems, which were obtained by modifying the TWIGL and SNR-300 benchmark problems[7]. 
Figures 1 and 2 respectively show the schematic configurations of modified TWIGL and SNR-300 
benchmark problems. The original TWIGL problem was modified by introducing a fixed source of 
strength 1.75812×106 n/cm3 (over all energy groups) in the region 1 and by adjusting the fission cross 
sections such that k = 0.95. The modified SNR-300 problem was obtained by replacing the central 
three fuel rings with a non-fuel material (control rod follower in the problem) and by adjusting the 
fission cross sections of the inner and outer cores uniformly such that k = 0.98. A distributed 
external source with a total strength of 5.5267×10

eff

eff
6 n/sec was introduced in the assemblies in the first 

and second rings in such a way that the relative source densities in the first and second rings be 0.7 
and 0.3, respectively. The source spectrum vector in 4-group structure was assumed to be (0.9, 0.1, 
0.0, 0.0), which is harder than the specified fission spectrum vector of (0.768, 0.232, 0.0, 0.0).  
 
Two types of perturbations were introduced in the TWIGL problem: first the thermal capture cross 
section in region 2 was reduced by about 5% (Case T1), and the ν value in region 2 was additionally 
increased by 0.85% in the second case (Case T2). For the SNR-300 problem, three cross section 
perturbations were considered. The fission cross sections were first increased by 1% in the inner zone 
(Case S1), and the capture cross sections of the control rod region were additionally decreased by 8% 
in the second case (Case S2). In the third case (Case S3), in order to introduce the flux shape 
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distortion from the initial shape as well as bigger reactivity change, the reduction of capture cross 
sections in Case S2 was increased to 14% from 8%.  
 
The accuracy of the FOP theory method was first tested for cases T1, S2, and S3 by comparing the 
FOP theory reactivity with the exact dynamic reactivity determined from the space-energy-dependent 
kinetics solution. The space-energy-dependent solutions were obtained using the implicit time-
differencing option of the DIF3D-K[8] nodal kinetics code. The adiabatic and FOP theory reactivities 
were also computed using the space-time factorization options of DIF3D-K and were compared with 
the exact dynamic reactivity. The cross section perturbations were introduced at a constant rate over a 
time period of 0.2 second. The resulting time-dependent dynamic and FOP theory reactivities are 
compared in Fig. 3, and their values at 0.5 second are compared in Table I. Note that the initial 
dynamic reactivity is exactly the same as the conventional static reactivity. These results clearly show 
that the adiabatic dynamic reactivities are essentially the same as the exact dynamic reactivities. This 
implies that the adiabatic assumption is an excellent approximation even for the case S3 whose final 
reactivity is equivalent to k . The results also show that the FOP theory method 
consistently underpredicts the reactivity change. However, the estimation errors are only 3.5%, 1.2%, 
and 2.6% for the cases T1, S2, and S3, respectively. Taking into account the magnitude of the 
reactivity change, it can be said that the FOP theory method for these perturbations in the source-
driven systems is reasonably accurate. 

993.0=eff

 
The FOP theory reactivity changes were also estimated for all the cross section perturbations using the 
finite difference diffusion theory method. Based on the above results of the adiabatic approximation, 
however, the accuracy of the FOP theory method was tested by comparing the FOP theory reactivity 
and the adiabatic dynamic reactivity. The real and adjoint fluxes calculations were performed using 
the finite difference diffusion theory option of the DIF3D code[9]. The resulting adiabatic dynamic 
reactivities and the FOP theory reactivities are compared in Table II. By comparing the results of 
Tables I and II, it can be seen that the initial reactivities estimated with the finite difference method 
deviate from the values determined with the nodal method by 0.2% and 11.6% for the TWIGL and 
SNR-300 problem, respectively. These differences are due to the mesh error of the finite difference 
method; the SNR-300 problem shows a larger deviation since only six triangular meshes were used 
per each hexagonal node, whereas a much finer Cartesian mesh was used in the TWIGL problem. Due 
to the mesh error, the adiabatic reactivity changes of the cases T1, S2, and S3 are also mispredicted by 
0.9%, 2.3%, and 2.6%, respectively. These errors can be removed by refining the computational 
meshes in the finite difference calculations, but it was not attempted since both the adiabatic dynamic 
and FOP theory reactivities were consistently calculated using the same mesh structure.  
 
The results in Table II show that the EPT expression estimated with the flux shape at the final 
perturbed state reproduces the reactivity changes exactly. The FOP theory method underpredicts the 
reactivity change by about 3.8% in Case T1 and by 4.5% in Case T2. For the SNR-300 problem, the 
prediction errors of the FOP theory method are even smaller; the error is only 2.8% even for the Case 
S3 which involves the largest reactivity change (0.0145). These results indicate that the FOP theory 
expression based on the initial flux of the external source problem is reasonably accurate. However, it 
is noteworthy that the reactivity changes are consistently underpredicted by the FOP theory method. 
 
The effects of the flux shape function on the FOP theory reactivity were further investigated by 
applying the initial and final fluxes of the source-free eigenvalue problem to the FOP theory 
expression of the reactivity change. As shown in Table III, the initial and final flux shapes of the 
source-free problem result in 7.6% and 9.9% errors, respectively, which are much larger than the 
errors obtained with the initial flux of the external source problem. On the other hand, they predict the 
exact reactivity change in the source-free system (0.00935) accurately; the final flux shape reproduces 
it exactly, and the initial flux shape underpredicts it by 2.1%. These results confirm that the flux shape 
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used in the perturbation theory expressions should be determined with the consistent neutron balance 
equation.  
 
 

V. CONCLUSIONS AND FUTURE WORKS 
 
The applicability of first-order perturbation (FOP) theory to reactivity estimation for source-driven 
systems was examined. Using the initial λ -mode adjoint flux as the weight function, the formally 
exact point kinetics equations were derived from the space- and energy-dependent neutron kinetics 
equations and the kinetics parameters including the dynamic reactivity were defined. Exact and first 
order perturbation theory expressions for the reactivity change were formulated for source-driven 
systems. It was shown that the use of the initial λ -mode adjoint flux as the weight function results in 
simple perturbation expressions similar to those for critical reactors. It was also shown that the 
external source perturbation itself does not change the reactivity in these formulations.  
 
Using two source-driven problems obtained by modifying the TWIGL and SNR-300 benchmark 
problems, the prediction accuracy of the FOP theory method for reactivity changes was estimated for 
various perturbations. The reactivity changes predicted by the FOP method were compared with exact 
dynamic reactivity changes determined by space-dependent kinetics solutions. The adiabatic dynamic 
reactivity was also computed and was compared with the exact dynamic reactivity. Numerical results 
showed that the adiabatic assumption is a good approximation for the ADS dynamics analyses and the 
accuracy of the FOP theory method for the ADS is reasonably good (less than 5% error for all test 
cases) and comparable to that for critical reactors. 
 
The flux shape used in the perturbation theory expressions should be determined with the consistent 
neutron balance equation. In other words, the initial flux shape used in the FOP theory expression for 
the reactivity change should be determined from the external source problem. It was also found that 
FOP theory consistently underpredicts the reactivity change. However, it is not clear whether this is 
an intrinsic property of the subcritical system or an accidental coincidence of the limited set of test 
problems. It requires further investigation. 
 
In this study, rather simple standard benchmarks for the conventional source-free systems were 
modified to simulate source-driven systems. In order to make more definite conclusions, further 
studies need to be performed using more realistic perturbations in source-driven systems.  
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Table I. Reactivity Changes Predicted by Spatial Kinetics and FOP Theory Methods 

Case T1 S2 S3 

Initial reactivity -0.05249 -0.02232 -0.02232 

Implicit spatial kinetics 0.00857 0.01024 0.01484 

Adiabatic spatial kinetics 0.00859 0.01024 0.01485 Reactivity 
change 

FOP theory method 0.00827 0.01012 0.01445 
 
 

Table II. Comparison of Adiabatic Dynamic Reactivity and FOP Theory Reactivity  

Case Adiabatic Dynamic Reactivity Exact δρ  FOP δρ  

Initial -0.0526 
T1 

Final -0.0441 
0.0085 0.0082 

Initial -0.0526 
T2 

Final -0.0393 
0.0133 0.0127 

Initial -0.0197 
S1 

Final -0.0154 
0.0043 0.0043 

Initial -0.0197 
S2 

Final -0.0097 
0.0100 0.0099 

Initial -0.0197 
S3 

Final -0.0053 
0.0145 0.0141 

 
 

Table III. FOP Theory Reactivity Changes of Case T1 Estimated with Source-Free Problem Fluxes 

Flux Shape δρ  

Initial unperturbed flux shape of source-free eigenvalue problem 0.0092 

Final perturbed flux shape of source-free eigenvalue problem 0.0094 
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Fig. 1. Quadrant Core of the Modified TWIGL External-Source Problem 
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Fig. 2. Schematic Configuration of the Modified SNR300 Benchmark Problem (Sixth Core) 
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Fig. 3. Comparison of Time-Dependent Reactivity Changes 
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